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Abstract 

This paper aims at discussing an automated measurement system for detecting carbonation depth in concrete 

sprayed with phenolphthalein. Image processing and Convolutional Neural Networks strategies are exploited 

to accurately separate the carbonated and non-carbonated areas and to remove those aggregates on the 

carbonation front that could bring to a wrong evaluation of the carbonation depth. Very strong correlation (R2 

> 0.98) is found between results provided by the proposed approach and the method suggested by the EN

13295 standard. The expanded uncertainty (coverage factor k =2) of this novel approach is 0.08 mm. ANOVA 

analysis performed in multi-operator tests proved that the highest source of uncertainty is the measurement 

system, which, on the other hand, is robust to changes in the operator performing the measurement.  
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1. Introduction

Durability of concrete is defined as its ability to resist weathering action, chemical attack, abrasion, or any 

other process of deterioration, by retaining the original form, quality, and serviceability when concrete itself 

is exposed to a certain environment [1]. 

In the late 20th century, an increasing number of reinforced concrete structures showed major deterioration due 

to durability problems, causing huge costs for repair and rehabilitation. This has also become an economic 

issue, with estimated direct and indirect costs of 3 4% of gross national product in developed countries, 

connected to maintenance and repair operations [2].   

One of the main causes of degradation is the carbonation of concrete. This is considered a critical problem, 

particularly in those regions characterized by a warm and relatively humid environment [3]. The carbonation 

of cement paste lowers the pH of the pore solution, thus contributing in depassivating steel reinforcements and 

in making them prone to corrosion. The pH value of non-carbonated cement-based material is approximately 

13, but it moves around 9 when carbon dioxide diffuses inside the material itself. This occurs since calcium 

hydroxide (Ca(OH)2) contained in the pore solution, reacting with carbon dioxide, is converted into calcium 

carbonate (CaCO3) [4], with a significant carbonation rate when RH ranges between 45-95%. In this way, the 

passive layer protecting the steel rebars is damaged and steel starts to corrode if it gets in contact with moist 

air [5]. The initiation of reinforcement corrosion is the main responsible for shortening the service life of 

reinforced concrete structures (RCS) [6,7]. Therefore, monitoring RCS is of utmost importance to prevent 

irreversible damages that may also end up in structural failure.  

The test used for determining carbonation depth is regulated by the EN 13295 standard [5]. This standard 

suggests spraying a phenolphthalein solution on the target to highlight the presence of carbonated/non-

carbonated areas. The phenolphthalein solution changes its colour in relation to the pH of the material: in the 

non-carbonated part of the specimen, where concrete has still a highly alkaline behaviour (pH  9), a purple-

red coloration is obtained, whereas in the carbonated area of the specimen, where pH  9, no colour change is 

observed [8]. The standard describes a procedure in which the operator is asked to manually measure the 

carbonation depth (dk), i.e. 

where the CO2 has reduced the alkalinity of the hydrated cement to an extent such that an indicator solution 

based on phenolphthalein remains colourless , by using rulers, callipers, etc.  



However, it should be underlined that, even if this method is easy to perform, it suffers from subjectivity, due 

to  experience, colours perception, and manual ability, low repeatability and low reproducibility. 

This paper aims at overcoming the aforementioned limits by discussing an automated and objective approach, 

based on machine vision, for measuring carbonation depth of concrete.  

There are very few papers dealing with the automated detection of carbonation depth in scientific literature. 

Segura et al. [9] developed an automatic digital image-processing algorithm that filters the image of the 

specimen, after calibration and background removal, to enhance the contour of the carbonated area and hence 

calculate carbonation depth. The algorithm appears to be accurate and strongly correlated to manual 

measurements (R2 = 0.96). Yet, the main drawback is that the heterogeneity of the specimen requires different 

thresholding/segmentation approaches when using direct sunlight illumination to separate the carbonated from 

the non-carbonated areas. 

Choi et al. [10] developed an image-processing technique to automatically detect the carbonated region 

highlighted by phenolphthalein solution; their algorithm consists of two subsequent detection processes: an 

initial binarization followed by a convex hull operation. The algorithm seems to be quite robust, but 

unfortunately, no quantitative results on carbonation depth are provided.  

Ruiz Madera [11] developed a dedicated vision system to take pictures in homogeneous light conditions and 

two different algorithms to detect the carbonated area in concrete specimens. The former is an image-

processing based algorithm for image segmentation in the RGB space; the latter exploits neural networks and 

deterministic image-processing strategies to improve detection of carbonation depth; indeed, this coupled 

approach causes an improvement in accuracy of 20% with respect to the sole use of deterministic approaches. 

However, the use of neural networks seems to exceed the requirements for this application, which could be 

afforded in a simpler way. In fact, neural networks have a significant computational time and require the 

definition of proper parameters, whose value considerably affects the output, so that an imprecise setting could 

cause considerable measurement errors (also in terms of repeatability). 

This paper presents a measurement system (hardware and software) targeted to the automated detection of 

carbonation depth in concrete specimens. Results obtained with the system have been compared to those 

performed by adopting the manual procedure defined in the EN 13295 standard. This comparison has been 

made in terms of carbonation depth values, repeatability and time consumption. Four different concrete 



compositions developed within the European project EnDurCrete (New Environmental friendly and Durable 

conCrete, integrating industrial by-products and hybrid systems, for civil, industrial and offshore applications) 

have been tested to prove the robustness of the system to concrete colour variation (e.g. due to the presence of 

carbon-based additions).  

The paper is organised as follows: Section 2 discusses the preparation of the concrete specimens and the 

phenolphthalein test for measuring carbonation depth; Section 3 describes the developed automated 

measurement system, focusing both on its hardware and software parts; Section 4 reports the metrological 

characterisation of the automated system and the comparison with manual measurements carried out on 

different concrete mixes; finally, Section 5 reports the main conclusions on the performance evaluation of the 

developed automated algorithm. 

2. Materials and experimental methods

2.1. Preparation of concrete specimens 

A Portland blended cement was used to cast four concrete compositions (C1, C2, C3, and C4). 

Limestone/quartz river sand (0/4 mm) was used as fine aggregate, whereas intermediate (5/10 mm) and coarse 

(10/15 mm) river gravels were used as coarse aggregates. Two polycarboxylate (PC)-based water reducers 

were used to reach the desired workability class (S5). 

The reference concrete, labelled as C1, was produced with a cement content of 375 kg/m3 and water/cement 

(w/c) ratio equal to 0.42 by weight. Aggregates were dosed at 48% for sand, 19% for intermediate gravel and 

33% for coarse gravel, respectively, on the total aggregates volume. Three increasing percentages of carbon-

based additions were added in order to change the colour of specimens, which from the lighter to the darker 

are identified as C2, C3, and C4, respectively. 

The concrete batches were mixed in a concrete mixer by adding at first powder materials in the following 

order: aggregates, carbon-based addition, and cement (mixed for 2 minutes). Afterwards, water was added and 

mixed for 3 minutes, then PC admixtures were incorporated to reach the same workability class (S5) and mixed 

for 15 minutes.  

Concretes were poured into cubic moulds of 10 cm per side and cured at a temperature (T) of 20 ± 1 °C and a 

relative humidity (RH) higher than 95% for 28 days.  



2.2. Accelerated carbonation and phenolphthalein test 

After 28 days of curing, the concrete specimens were exposed to accelerated carbonation in an environmental 

test chamber (Figure 1) at T = 21 ± 1 °C, RH = 60 ± 10% and CO2 concentration = 3 ± 0.2 vol.% [12]. This 

CO2 concentration, much higher than the one suggested by the EN 13295 standard (i.e. CO2 = 1%), was adopted 

to accelerate the carbonation process of the specimens. 

Figure 1 Environmental CO2 chamber hosting concrete specimens 

The carbonation depth was measured on the specimens according to the EN 13295 standard at 7 days after the 

curing period. This operation was performed by cutting the specimens and treating the internal surface with 

1% solution of phenolphthalein in alcohol. Indeed, the specimens (cubes) were split into two halves, internally 

sprayed with phenolphthalein solution, and pictures taken of the sprayed surfaces. The maximum carbonation 

depth (dmax) was also measured, even if the standard requires to measure it only when the carbonation profile 

is irregular and dk > 4 mm. Manual measurements were performed using a Vernier calliper (accuracy ± 0.01 

mm).  



3. Automated measurement system for carbonation depth of concrete 

The automated measurement system discussed in this paper (Figure 2a) aims to objectively measure the 

carbonation depth on concrete specimens.  

(a) (b) 
Figure 2 Measurement system setup for carbonation depth measurement system: overall setup (a) and detailed 

representation (b) 

The measurement setup, excluding the specimen to be tested, consists of the following elements (Figure 2 b): 

Camera (1) and diffuse illumination system (2): the camera is a standard full-HD (1920x1080 pixel) 

webcam with auto-focus capability. The choice of such a camera is to demonstrate the possibility of 

having accurate measurement results also with a low-cost device. Two slightly tilted (compared to the 

camera optical axis) LED strips covered with a diffusing panel were used for diffuse illumination.  

Bar with fiducial markers (5): five markers are placed on a bar whose height can be adjusted, with 

reference to the height of the specimen (4). The bar can slide on a dovetail guide (6). The positioning of 

the markers at the same height of the sprayed surface of the specimen makes it possible to perform a 

pixel-to-mm conversion. The markers adopted are squared markers targeted to be recognised by the 

Python OpenCV ArUco library ([13,14]) and they are needed to perform an automated camera 

calibration [15]; 

Back-light LED illumination plate (3): the homogeneous high-contrast background created by back-

light illumination makes it possible to ease the detection of the external contour of the specimen.  



Figure 3 Workflow for measuring the carbonation depth of a concrete specimen sprayed with phenolphthalein 

As for the measurement procedure, it consists in three main steps: a) once the specimen is positioned on the 

lighting plate with the sprayed surface facing the camera, b) the sliding bar is adjusted to have the markers at 

the same level of the target surface; c) the operations reported in Figure 3 are performed by a software 



specifically developed in Python programming language that exploits the OpenCV library [16]. More in 

details, once the raw image is acquired by the software, the processing algorithm performs the following 

operations: 

ArUco marker detection for image calibration: the script autonomously detects the 5 ArUco markers 

and measures, for each of them, the length of the sides of the markers in terms of pixels. Then, the 

average value of the 20 measured sides is calculated. Knowing that the side of each marker is 25 mm, 

the pixel-to-mm conversion constant is obtained, and the picture is calibrated; 

ROI (Region-Of-Interest) selection: a ROI is extracted from the image acquired in order to exclude all 

the disturbing elements that are presents in the background of the picture; 

Specimen contour extraction: To ease the extraction of contours (in Computer Vision 

contours are curves obtained by joining all the continuous points with similar intensity along the 

boundary of a target), a binarization of the image is usually recommended [16]; this step requires a 

proper selection of a threshold on the intensity values associated to the pixels of the image. The 

combined diffuse and back-light illumination adopted in the system makes it possible a smoother 

identification of two distinct areas in the histogram intensity values of the image: the darkest area of 

the specimen, on the left, and the lightest area of the background, on the right.  

(a) (b) 

Figure 4 Histogram representation of pixel intensity level of specimen image: Comparison between diffuse (a) 
and diffuse plus back-light (b) illumination. 

Figure 4 reports a comparison of the histogram representation of pixel intensity between a specimen 

illuminated by diffuse illumination (Figure 4a) and the same specimen illuminated via both diffuse 



and back-light illumination (Figure 4b). The wider separation between these two areas is well evident 

in the latter configuration. Indeed, this eases the identification of a proper pixel intensity threshold that 

brings to a correct separation of the specimen contour with respect to the background in the binarized 

image.  

The length of this contour is the external perimeter of the specimen and the area within the contour 

represents the specimen overall surface area; 

Purple area identification: the purple contour representing the carbonation front is identified through 

a binary threshold on the HSV (hue, saturation, value) colour space. Contrarily to the RGB colour 

spaces, which codes colour through three channels, the HSV colour spaces, which separates luma, i.e. 

image intensity, from chroma, i.e. colour information, codes colour only by the hue channel; in fact, 

the other two channels express the saturation, from unsaturated (shades of grey) to fully saturated, and 

the brightness (value) of the colour. This justifies the use of the HSV colour space for colour-based 

segmentation. Indeed, processing the image in the HSV colour space makes it possible to widen the 

colour separation between the carbonated and the non-carbonated area, since those pixels belonging 

to the image region targeted to be considered non-carbonated will therefore fall into a specific range 

of hue, saturation and value.  

The threshold ranges in the HSV colour space have been chosen by asking an operator expert in testing 

according to the EN 13295 standard, but not expert in computer vision, to analyse 24 different 

specimens through a dedicated graphical user interface (Figure 5). The set of 24 specimens was created 

by including specimens cast with the four concrete mixes in order to have different concrete and purple 

colour tone. The optimal thresholds in the HSV colour space have been identified as those producing 

the wider min-max intervals of Hue, Saturation and Value and guaranteeing a good quality label on 

the automatically thresholded images when revised by the expert.  

As shown in Figure 6a, once thresholding in the HSV colour space is performed, the binarized image 

obtained is effective for isolating the contour of the non-carbonated area and thus for calculating the 

area within this contour. It is worth mentioning that aggregates within the contour are considered holes 

and properly filled to be included in the calculation of the overall non-carbonated area. 



Figure 5 Graphic user interface adopted for interactive selection of the thresholds in the HSV colour space. 
The blue contour represents the specimen external perimeter, whereas the green contour represents the purple 

area detected 

(a) (b) 

Figure 6 Binary image obtained through HSV range threshold (a), green biggest contour which well 
individuate non-carbonated area (b). 

Carbonation depth (dk) calculation: the EN 13295 standard recommends to perform the following steps 

to estimate the carbonation depth: a) identify five measurement points on each side of the sprayed 

surface of the specimen; b) measure carbonation depth with a ruler/calliper, rounded to the nearest 0.1 

mm, in correspondence of the five identified points; c) compute the average value on the five measures, 



rounded to the nearest 0.5 mm; d) repeat the process for each side of the specimen and e) compute dk

as the mean value of the depths calculated for each one of the target sides of the specimen. 

The availability of the image of the specimen makes it possible to increase the statistical basis on 

which calculating the carbonation depth, since this value can be obtained as the ratio between the area 

of the carbonated zone and the perimeter of the same zone  see equation 1.  

(1) 

The area of the carbonated zone can be estimated by subtracting the area of the non-carbonated zone 

from the total area within the external contour of the specimen, according to equation 2.  

(2) 

The carbonation depth in dimensional units can be calculated by applying the pixel-to-mm conversion 

parameter according to equation 3. 

(3) 

Maximum carbonation depth (dmax) calculation: when the distribution of aggregates is dense over the 

specimen surface, they may likely lie on the carbonation front. If this is the case, since aggregates react 

differently to phenolphthalein and remain uncoloured, they can induce in misleading interpretation of 

dmax [10]. On the one hand, a human operator could be able to discard aggregates in the calculation of 

the maximum carbonation depth; on the other hand, this choice is highly subjective, since it also relates 

to the colour-perception of each operator. To make the whole approach robust and highly objective, a 

dedicated classification process based on Convolutional Neural Network (CNN [17]) was developed. 

The VGG16 [18] classifier mentation [19]) was trained by selecting ROIs 

containing/not containing aggregates (500 pictures of each type, divided between training and 



validation sets, with a ratio equal to 9:1). The classifier was then integrated in an algorithm that scans 

the specimen area horizontally and vertically, starting from the centre of gravity of the specimen face 

in order to find the maximum distance of the carbonation profile from the external contour; if an 

aggregate is present within the profile, the value is discarded. 

Figure 7 Dense aggregate detection (red square) and correction of the identified maximum carbonation value 

An example of the output is reported in Figure 7, where the correct value of the maximum carbonation 

depth is identified by the red line. The red rectangle highlights the max depth that would have been 

identified if aggregates were not removed: this would result in a miscalculation of the maximum 

carbonation depth, which would result in 10.70 mm (overestimated value) with respect to 5.90 mm 

(correct value). 

4. Results and discussion

4.1. Metrological characterization 

The metrological performance of the measurement system was assessed in terms of repeatability  and 

reproducibility[20]. The Type A uncertainty was assessed by taking 100 pictures of the same specimen while 

its angular position is slightly varying on the lighting plane for back-light illumination (i.e. rotating the 

specimen around the vertical axis perpendicular to the lighting plane). The reproducibility of the measurement 

system was assessed by asking 3 different operators to perform ten measurements each. It should be highlighted 

that the specimens used for the two analyses were different. This choice was undertaken to demonstrate the 

robustness of the approach.  



The distribution, normalised with respect to their mean value, related to the values measured in the intra-

operator analysis is reported in Figure 8. The Type A uncertainty associated to the measurement is estimated 

to be 0.04 mm. If considering a coverage factor k = 2, an expanded uncertainty value of 0.08 mm is identified. 

Figure 8 Distribution normalised with respect to the mean value of carbonation depth values measured on 100 
images by the same operator 

Data belonging to the inter-operator tests were analysed performing an ANOVA single factor analysis. Table 

1 and Table 2 report, respectively, the Variance analysis for each operator and the results of the ANOVA test. 

Table 1 Inter-operator test: operator performance on ten measurements 

Groups Count 
Sum 

[mm] 
Average 

[mm] 
Variance 

[mm2] 
Operator 1 10 32.97 3.29 0.0021 
Operator 2 10 32.80 3.28 0.0018 
Operator 3 10 32.84 3.28 0.0014 

Table 2 ANOVA table of inter-operator test 

Source of Variation 

Sum of 
Squares 
[mm2] 

Degree 
of 

freedom 
Variances 

[mm2] F 

Standard 
Deviations 

[mm] P-value F crit 
Between Groups 0.0015 2 0.0007 0.4184 0.02 0.6622 3.3541 
Within Groups 0.0479 27 0.0017 0.04 

Total 0.0494 29 

From the ANOVA analysis, it is clear that the null-hypothesis is verified. Moreover, the reproducibility 

variance is quite small (0.0007 mm2) if compared with the repeatability one (0.0017 mm2). This means, on the 



one hand, that the main amount of variation is due to the algorithm itself; on the other hand, that the algorithm 

is quite robust to position changes of the specimen over the lighting table. Indeed, in performing inter-operator 

tests, each operator was asked to remove the specimen from the lighting table and to place it again over the 

table to perform the measurement. This sequence was intended to randomize the way the specimen could have 

been framed by the camera. Figure 9 reports the variation of the specimen centre point (a) over the image and 

the rotation angle of the specimen around the camera optical axis (b). Hence, despite a translational variation 

of 15 mm and 9 mm (horizontal and vertical variations of the centre of the specimen) and an angular variation 

of ±3° in the positioning of the specimen, the algorithm can calculate the carbonation depth of the specimen 

with the same uncertainty identified in the inter-operator test. The main source of uncertainty is therefore the 

one associated to the algorithm itself, and it turns out to be U = 0.08 mm (expanded uncertainty calculated 

with coverage factor k = 2). 

(a) (b) 

Figure 9 Variation of the specimen position over the lighting table during the inter-operator test: location of 
the centre of the specimen obtained as distance from the origin of the ROI of the image (a); rotation angle of 

the specimen around the camera optical axis (b) 

4.2. Comparison with manual measurement results 

Table 3 reports the carbonation depth values measured on the four different specimens after 7 days of 

accelerated carbonation test.  

Measurement were performed both with the method recommended by the EN 13295 (manual measurement), 

and the new developed automated system. Results are reported both in terms of non-approximated values and 

with 0.5 mm accuracy, this latter value being the resolution recommended by the EN 13295 standard. 



Table 3 Carbonation depth [mm] results obtained with calliper and automated algorithm 

C1 C2 C3 C4 
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N
on

-
ap

pr
ox

im
at

ed
 

W
it

h 
0.

5 
m

m
 

ac
cu

ra
cy

 

N
on

-
ap

pr
ox

im
at

ed
 

W
it

h 
0.

5 
m

m
 

ac
cu

ra
cy

 

N
on

-
ap

pr
ox

im
at

ed
 

W
it

h 
0.

5 
m

m
 

ac
cu

ra
cy

 

N
on

-
ap

pr
ox

im
at

ed
 

W
it

h 
0.

5 
m

m
 

ac
cu

ra
cy

 

N
on

-
ap

pr
ox

im
at

ed
 

W
it

h 
0.

5 
m

m
 

ac
cu

ra
cy

 

N
on

-
ap

pr
ox

im
at

ed
 

W
it

h 
0.

5 
m

m
 

ac
cu

ra
cy

 

N
on

-
ap

pr
ox

im
at

ed
 

W
it

h 
0.

5 
m

m
 

ac
cu

ra
cy

 

N
on

-
ap

pr
ox

im
at

ed
 

W
it

h 
0.

5 
m

m
 

ac
cu

ra
cy

 

Calliper 1.51 1.50 6.20 6.00 2.93 3.00 8.20 8.00 2.06 2.00 7.90 8.00 2.01 2.00 7.60 7.50 

Automated 

algorithm 
1.42 1.50 6.24 6.00 2.86 3.00 8.10 8.00 2.01 2.00 8.23 8.00 2.18 2.00 7.71 7.50 

It is evident that the automated method well complies to the EN 13295 requirements: if rounding to 0.5 mm 

accuracy, the carbonation depth values of the automated system perfectly match those measured manually.  

Concerning maximum carbonation values, it can be noticed that the automated system well matches the calliper 

results. Indeed, if comparing the raw dk and dmax results provided by the two methods (Figure 10), a correlation 

coefficient R2 = 0.96 is obtained, indicating a very strong correlation between the two approaches. The linear 

fitting of the dk values shows a small offset of about 0.03 mm, apparently indicating an overestimation of 

results given by the automated system. This could be due, for instance, to the different calculation methods 

adopted by the two approaches, since the whole carbonation profile is considered in the automated system, 

whereas just 5 points are analysed in the manual measurement; this could explain the absence of offset in the 

one-shot measurement for evaluating the dmax value.  If rounding data to the nearest value with 0.5 mm 

resolution, as suggested by the EN 13295 standard, a perfect correlation is found, since the two approaches 

provide the same values for dk and dmax.  

It should be highlighted that the automated algorithm is also robust to changes in concrete colour, ranging from 

bright  reference C1  to dark (because of carbon-based additions)  C2, C3, C4.  



(a) (b) 

Figure 10 Correlation between automated algorithm and calliper results: dk (a) and dmax (b) values 

As measurement time is concerned, it is worthy to note that the manual procedure requires time not only for 

the measurement itself, but also for evaluating all the different case studies reported in the standard (presence 

of a dense aggregate lying within the carbonation front, side length lower than 3 cm, etc.), whereas these are 

all implemented in the automated algorithm. With the manual method, the measurement requires 

approximately 240 s per specimen (considering an expert operator), whereas the automated algorithm takes 

just 5 s per specimen (Intel Core i5-6600 CPU 3.30 GHz machine). Therefore, the time saving with the 

automated method is of about 98%. 

5. Conclusions

An automated measurement system for detecting carbonation depth in concrete specimens has been proposed 

and discussed in this paper. By exploiting machine vision and Convolutional Neural Networks, the system is 

able to automatically calculate the carbonation depth (dk) and the maximum carbonation depth (dmax) of a 

specimen, rejecting the eventual presence of aggregates lying on the carbonation front. The system proved to 

be accurate (estimated expanded uncertainty U = 0.08 mm) and robust to changes in the operator performing 

the measurement. Moreover, the approach also proved to be robust to changes in the colour of the concrete 

specimen analysed. Correlation analysis performed with the method suggested by the EN 13295 standard 

proved the efficacy of the whole method, with great time saving (approximately -98%).  
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